

High Voltage Electrolytes for Li-ion Batteries

PIs: Richard Jow, Kang Xu

Arthur v. Cresce, Kang Xu, Jan Allen, Oleg Borodin, Samuel Delp, T. Richard Jow Army Research Laboratory Adelphi, MD 20783

14 May 2013

Project ID: ES024

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Start: June 2011

• End: Dec. 2014

50% complete

Budget

- Funding received in FY2011
 - \$250K
- Funding received in F2012
 - \$250K
- Funding for FY13
 - \$250K

Barriers

- SOA electrolytes based on carbonate solvents decompose near or above 4.5 V
- Lack of stable and reliable 5 V cathodes as characterization platform.
- Lack of understanding of oxidation stability and reactive pathway of the electrolyte at the cathode/electrolyte interface

Partners

- Argonne National Laboratory
- U of Maryland
- U of Utah
- NRL

Objectives - Relevance ARL

- Develop high voltage electrolytes for high voltage Li-ion batteries for increased energy density
 - Explore and identify solvents or additives for electrolytes that allow the operation of high voltage cathodes
 - Understand the reactive pathways and reaction products at the electrode/electrolyte interface through computation and surface characterization for guiding the development of improved electrolyte components
 - Identify and/or develop structurally stable high voltage cathode materials

Milestones

FY 2012:

- Identified LiPFB (lithium perfluorinated tert butoxide) was more effective than HFiP in improving cycle life in LNMO/graphite cells at RT.
- Synthesized Al(HFiP) additives with electron deficient center Al
- Calculated oxidation potential of solvents and validate with experiments

FY 2013:

- Synthesized a number of new additives including, Al(PFB), HFiP-grafted phosphazene, PFB-grafted phosphazene
- Continue testing of LNMO/graphite and doped LCP/graphite full cells in electrolytes with additives at RT and 55 °C
- Postmorten diagnostic for surface characterization and SEI chemistry studies
- Computational studies of new additives and interactions with electrodes

Approach/Strategy

Develop new additives for carbonate based electrolytes

- Develop additives with electron deficient center such as Al
- Perfluorinate additives to enhance their effectiveness.

Understand and characterize capacity fading mechanism

- Electrochemical methods: Characterize capacity fading, kinetics, impedance changes w.r.t. rate and temperatures in half and full cells
- Surface analysis: XPS, NMR, AFM

Identify and/or develop stable high voltage cathodes as a testing vehicle

- Focus on 4.7 V LiNi_{0.5}Mn_{1.5}O₄ (LNMO) spinel
- Develop 4.8 V modified-LiCoPO₄ (LCP)

Computational effort

- Understand oxidative stability of solvents in electrolytes
- Understand reactive pathways of additives and electrolytes on cathodes
- Develop ability to predict and design electrolyte components

Technical Accomplishments

Designed and synthesized new additives

- Electron deficient additives: HFiP, Al(HFiP), HFiP-grafted phosphazene
- Perfluorinated additives: PFBP, Al(PFB), PFB-grafted phosphezene

Evaluated perfluorinated additives

 Higher degrees of fluorination of additives such as PFBP resulted in better cycling performance.

Analyzed surface of graphite anode and LNMO cathode

 XPS surface analysis revealed the presence of fluorinated alkyl substructure on cathode.

Evaluated cycling performance of LNMO/graphite full cells

 Identified that a combination of HFiP and A-1 additives can reduce capacity fading at 55 °C.

Evaluated cycling performance of Fe doped LCP (LCFP)/Li half cells

LCFP cycled well at RT but faded at 55 °C in baseline electrolyte.

Technical Accomplishments - continued

- Computational: Calculated Oxidative stability of Electrolyte and Additives
 - Oxidation potentials of solvents calculated using DFT would be lowered by the presence of anions and were in agreement with experiments.
 - Calculated oxidation potentials of major solvents including carbonates, sulfones, alkylphosphates with anions BF₄⁻, PF₆⁻, FSI, TFSI, DCTA, DFOB, ClO₄⁻.
 - Calculated oxidation potentials of additives including HFiP and HFiP/BF₄⁻ cluster. As expected, BF₄⁻ lowers the oxidation potential of HFiP significantly.

Performance of Perfluorinated Additive LiPFB ARL

- Test cells: LNMO/A12 (graphite) at RT
- Electrolytes: 1.2 M LiPF₆ in EC:EMC (3:7) with Al(HFiP) and LiPFB (shown as PBFP* in the above figure) and without.
- The electrolyte with LiPFB showed much improved cycle life for LNMO/A12 over the electrolyte without additives.

PFBP identity was re-characterized and discussed in the next slide.

^{*} All LNMO and A12 electrodes were provided by ANL.

PFBP Identity

- Initially thought to be PFBP
- Actually an intermediate lithium alkoxide salt
- Bulky fluorinated tert-butyl groups prevented full esterification of phosphorus center
- Other additives being re-characterized
- Scale-up of Li perfluorotert-butoxide (LiPFB) by ANL ongoing

Surface Analysis with HR-XPS

HR-XPS conducted on both cathode and anode cycled in baseline and HFiP-containing electrolytes

- P 2p absent in control samples
- P2p on test samples
 - 5~10 X more on cathode than anode
- C1s for CF₃ only found on cathode

The fate of phosphate in electrolyte

- Phosphate ends up on cathode and anode
- Fluorinated alkyls substructure on cathode

P 2p Binding Energy/eV

New Additives Synthesized

HFiP

$$F_3C$$
 O
 CF_3
 F_3C
 CF_3
 CF_3

PFBP

Al(HFiP)

$$CF_3$$
 CF_3
 CF_3
 CF_3
 CF_3
 CF_3

AI(PFB)

HFiP-grafted Phosphazene

$$F_{3}C \longrightarrow CF_{3} \qquad F_{3}C \longrightarrow CF_{3}$$

$$F_{3}C \longrightarrow CF_{3} \qquad F_{3}C \longrightarrow CF_{3}$$

$$F_{3}C \longrightarrow CF_{3} \qquad F_{3}C \longrightarrow CF_{3}$$

$$F_{3}C \longrightarrow CF_{3} \qquad CF_{3}$$

PFB-grafted Phosphazene

Capacity Improvement – Perfluorinated Additives

- Cells: LNMO/A12

 (graphite) in baseline
 electrolyte with additives.
- Comparing to the partially fluorinated counterparts, Al(PFB) and PFB-grafted phosphezene were shown to improve the capacity utilization at RT.

* All LNMO and A12 electrodes were provided by ANL.

Capacity/mAh/cm²

LNMO/Graphite at Room Temperature and 55 °C ARL

- dQ/dV vs. V plots at C/10, C/5 and C/3 rates at RT and 55 °C.
- Test Cell: LiNi_{0.5}Mn_{1.5}O₄ (LNMO)/Graphite (A12)
- Baseline electrolyte: 1.2 M LiPF₆ in EC:EMC (3:7)
- At 55 °C,
 - ✓ the cell capacity was reduced.
 - ✓ the cell impedance was increased.
- Cycling at elevated temperatures is a challenge.

Additives in LNMO/Graphite at 55 °C

55 °C, 1 C Rate

- dQ/dV vs. V plots at 1 C rate at 55 °C.
- Test Cell: LiNi_{0.5}Mn_{1.5}O₄ (LNMO)/Graphite
- Electrolyte: 1.2 M LiPF₆ in EC:EMC (3:7) with and without additives.
- HFiP + A-1 led to faster kinetics and better performance for the cell.

Impact of Additives in LNMO/Graphite at 55 °C

- At 55 °C, either HFiP or A-1 additive alone couldn't prevent the cell from losing capacity.
- A combination of HFiP and A-1 significantly improved the capacity retention at 55 °C.

Stabilized LCP/Li at Room Temperature and 55 °C ARL

- Test cells: Fe doped LiCoPO4 (LCFP)/Li
- Cycled between 3.5 and 4.95 V in 1.2 M LiPF₆ in EC:EMC(3:7)
- LCFP cycled well at RT in baseline electrolyte.
- The capacity of LCFP faded gradually at 55 °C in the baseline electrolyte suggesting thermally promoted reactions occurred between LCFP and the electrolyte.

 TECHNOLOGY DRIVEN, WARFIGHTER FOCUSED.

Overview of Computational Studies

SFL

Interfacial structure and the associated interfacial resistance at the SEI – electrolyte interface

SEI: Li₂EDC EC:DMC(3:7)/LiPF₆

► Investigating the structure and transport at SEI-electrolyte interface and SEI model compounds

Conductivity of Li₂EDC (Δ E=64-84 kJ/mol) from Borodin, O.; Zhuang, G.V.; Ross, P.; Xu, K. J. Phys. Chem. C 2013 (in press)

Oxidative stability and decomposition reactions of electrolytes

M05-2X/6-31+G** PCM(ϵ =20)[5.55] LC- ω PBE/6-31+G** PCM(ϵ =20)[5.60] LC-ωPBE/6-31+G** SMD(ε=20) [5.43]

Major Focus within ABR Program

Explore major classes of electrolytes:

- > electrolyte additives;
- > carbonates:
- ➤ linear and cyclic sulfones (TMS, EMS);
- > alkyl phosphates;
- \triangleright solvents with anions : BF₄, PF₆, FSI, TFSI, DCTA, DFOB,ClO₄-

Focus on the influence of salt on the solvent and additive oxidative potential and condensed phase effects.

Xing, L.; Borodin, O. PCCP, 2012, 14, 12838 Borodin, O.; Jow. T. R. ECS Trans. 2013 (in press) Borodin, O.; Behl.; Jow, T. R. J. Phys. Chem. C 2013 (in press)

Structure and transport in bulk electrolytes and SEI components with a focus of Li⁺ competitive solvation in mixed solvents.

Solvent-Anion Oxidation Stability

	H or F			
	transfer	ε=1	ε=4.2	ε=20.5
DMC/BF ₄ -	yes	4.14	5.79	6.21, 5.92 ^a
EC/BF ₄ -	yes	4.55	5.95	6.07 (6.39, 6.21)
EC_2/BF_4^-	yes	5.17		6.38 (6.46, 6.30)
EC_3/BF_4^-	yes			6.55, 6.37
$EC/LiBF_4(v1)$	yes	8.74		6.64
$EC/LiBF_4$ (v2)	yes	8.46		6.82
EC ₂ /LiBF ₄	no			(7.51, 7.31)
EC ₂ /LiBF ₄	yes			(6.72, 6.60)
FEC/BF ₄ -	yes	4.93	6.31	6.62
VC/BF ₄ -	no	4.17	5.16	5.46, 5.47
DMC/PF ₆ -	yes	4.56	6.12	6.51, 6.29
EMC/PF ₆	yes	(4.55, 4.44)	(6.10, 5.91)	(6.50, 6.31)
EC/PF ₆ -	yes	4.94, 4.71,	6.27	6.57, 6.37
EC ₄ /PF ₆ -	yes			(6.47, 6.53)
EC ₃ /LiPF ₆	yes			6.94 (6.78)
PC/BF ₄ -	yes	4.57		6.25
PC/PF ₆ -	yes	4.84, 4.63		6.46, 6.29
FEC/PF ₆ -	yes	5.16		6.78, 6.48 ^a
EMS/BF ₄ -	no	5.31	6.41	6.62
$TMS/PF_6^-(a)$	no	5.44	6.36	6.54
$TMS/PF_6^-(b)$	no	5.48	6.35	6.49
EMS/PF ₆ -	no	5.46	6.47	6.66
$TMP/BF_4^-(a)$	no			(6.47, 6.45)
$TMP/BF_4^-(b)$	no			(6.68)
TMP/PF ₆ -	no	5.07		6.62
EC/DFOB- (a)	No			6.03, 5.92
EC/DFOB- (b)	No			6.08, 5.94

Oxidation potential (adiabatic energy) of solvent/anion complexes from DFT calculations from the M05-2X/cc-pvTz and M05-2X/6-31+G** calculations denoted in parentheses. **TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.** Borodin, O.; Behl.; Jow, T. R. J. Phys. Chem. C 2013 (in press)

Oxidation of the EC₄/BF₄ Cluster

- The BF_{$^{-}$} assisted H transfer from one EC to another was observed during oxidation.
- Oxidation potential for the cluster was significantly lower than the isolated EC oxidation potential of 7-7.2 eV calculated using PCM (ε =20) GY DRIVEN. WARFIGHTER FOCUSED.

RDECOM Oxidation Stability of Additives

Oxidation potential (adiabatic energy E and free energy G) vs. Li+/Li calculated using M05-2X/6-31+G** level with PCM(e=23)

	E (V)	G (V)
$PO(OCH_3)_3$ (TMP)	6.8	6.9
$PO(OCF_3)_3$ (f-TMP)	8.4	8.3
PO(OCH(CF ₃) ₂) ₃ (HFiP)	8.1	
$B(OCH(CF_3)2)_3$ (HFiB)	8.6	8.5
$Al(OCH(CF_3)_2)_3$ (HFiAl)	8.0	8.0
$B(OCH(CF_3)_2)_3/BF_4^-$		
(HFiB/BF ₄ -)	7.0	6.9

Optimized geometry of HFiB/BF4- complex before and after oxidation. From M05-2X/6-31+G** calculations with $PCM(\varepsilon=23)$

- Fluorination of trimethyl phosphate $PO(OCH_3)_3 \rightarrow PO(OCF_3)_3$ increases its intrinsic oxidation potential by 1.8 V.
- >HFiP and HFiAl additives have 0.3-0.4 V lower intrinsic oxidative stability compared to f-TMP, while HFiB has the highest oxidative stability of 8.6 V among additives.
- \triangleright Presence of fluorinated anions such as BF₄ significantly decreases additive oxidative stability, for example, $HFiB/BF_4^-$ oxidative stability is 1.6 V lower than that of HFiB due to spontaneous fluorine transfer from BF_4^- to HFiB and B-O bond cleavage as shown in Figure above.

Collaboration/Coordination 4R

- ANL Gregory Krumdick: For scaling up ARL developed HFiP and PFBP additives.
- ANL Bryant Polzin: Providing high voltage and high energy electrodes and A12 graphite electrodes.
- ANL Javier Bareno Garcia-Ontiveros, Ira Bloom: Discussion on Post Test Facility.
- ANL Zhengcheng John Zhang: Information exchange and discussion.
- ANL Anthony Burrell, Dennis Dees, Khalil Amine: Coordination and discussion.
- LBNL Michel Foure, Guoying Chen, Vincent Battaglia: Information exchange and discussion.
- U. of Rhode Island Brett Lucht: Information exchange and discussion.

Future Work

- Continue testing of new additives or combination of additives in baseline electrolyte in LNMO/graphite full cells at elevated temperatures.
- Understand the capacity fading mechanism at elevated temperatures through more detail electrochemical methods and surface characterization analysis.
- Perform computational screening of redox stability and understand decomposition reactions of the electrolyte with electrode materials using DFT calculations.
- Continue to develop and collaborate with cathode materials developers for developing more stabilized high voltage cathode materials.

Summary

- Perfluorinated additives including PFBP and Al(PFB) showed much improved cycle life compared to the partially fluorinated counterparts in LNMO/graphite system at RT.
- Cycling of LNMO/graphite at 55 °C is a challenge. The capacity retention of LNMO/graphite system was greatly improved in the electrolyte containing a combination of HFiP and A-1 over that containing HFiP or A-1 alone.
- LCFP/Li half cell could be cycled well in baseline electrolyte at RT but showed gradual capacity fading at 55 °C.
- Oxidation potentials of solvents including additives calculated using DFT would be lowered by the presence of anions and were in agreement with experiments. EC/PF₆⁻ has higher oxidation stability than EC/BF₄⁻.

Acknowledgements

- DOE ABR Program
 - Peter Faguy, Tien Duong, David Howell
- National Labs
 - ANL: Drs. Amine, Abraham, Zhang, Wu, and Lu
 - BNL: Dr. X. Yang
- NRL
 - Drs. Michelle Johannes, Khang Hoang
- U. of Maryland
 - Dr. Karen Gaskell